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LElTER TO THE EDITOR 

Nonlinear deformations of su(2) and su(1,l) generalizing 
Witten's algebra 

C Delbecq and C Quesnetr 
Physique NuclQire Thkorique et Physique MathGmatique, Univenitk Iibre de Bruxelles, 
Campus de la Plaine CP229, Boulevard du l iomphe, B1050 BNxelle$ Belgium 

Received 3 August 1992 

AbslracL Nonlinear deformations of su(2) and su(1,l) involving WO deforming functions 
f(3o) and g( Jo) are mnsidered. For g( Jo) = I ,  they reduce to some algebras lint 
studied by Polychronakos and Rosk. Special emphasis is laid on the case where g( Jo) 
is a Linear function of Jo. It is shown that for any X = 2, 3, . . ., there exist ( A  - 1)- 
palameter algebras that ale deformations of su(2) or su(1,l) respectively, and for which 
f (30) is a polynomial of degree A. For X = 2, such algebras are equivalent to Witlen's 
fint deformation of su(2) or su(1,l). For any A, the spectrum of Jo is exponential 
instead of linear as in the case where g( Jo) = I. 

Quantized universal enveloping algebras, also called q-algebras or quantum groups, 
refer to some specific deformations of Lie algebras (Jimbo 1985, Drinfeld 1986). In 
recent years, there has been some interest in more general deformations involving an 
arbitrary real function of the weight generators and including q-algebras as a special 
case (Polychronakos 1990, R o k k  1991, Daskaloyannis 1991, Granovskii et a1 1992). 
As shown by RoEek for the deformed su(2) algebra, the presence of an arbitrary 
function gives rise in the representation theory to a wealth of interesting phenomena 
that are absent in the q-algebra case and might prove useful in some applications to 
physical models. 

The purpose of the present letter is to further extend the class of nonlinear 
algebras considered so far by allowing for two deforming functions instead of one. In 
the case of the deformed su(2) and su(1,l) algebras to which we shall restrict ourselves 
here, the two deforming functions f (  J J  and g( J,) appear in the commutator of J+ 
with J- and in that of Ju with J+ or J - ,  respectively. The definition of the algebras 
is completed by the condition that there does exist a Casimir operator of the type 
considered by Polychronakos (1990) and R o k k  (1991). For g ( J u )  = 1, one finds 
the algebras previously studied, for which f(Ju) may be arbitrary. On the contrary, 
whenever g( J,) explicitly depends upon J,, the existence of a Casimir operator 
imposes some restrictions upon f (  Jo). 

t Directeur de recherches FNRS 
$ E-mail: quesne@ulb.ac.be 

0305-4470/93/040127+08$07.50 @ 1993 IOP Publishing Ltd L127 



L128 Letter to the Editor 

Special emphasis will be laid on the simplest non-trivial case, namely that 
corresponding to linear g(Ju). Such a case looks interesting because the spectrum of 
J, is exponential instead of h e a r  as for the algebras studied so far. The algebras 
herein considered might therefore be applicable to problems wherein such a type of 
spectrum makes its appearance (Fairlie and Nuyts 1991, Spiridonov 1992a,b). An 
example is provided by the so-called logarithmic trajectories in quantum field theory 
@’up and Cremmer 1971). 

For linear g(Ju), the allowed functions f(Ju) are polynomials of degree higher 
than 1. When f( J,) is quadratic, one gets in the su(2) case a quadratic algebra known 
as Witten’s first deformation of su(2) (Wkten 1990, Curtright and Zachos 1990). The 
families of algebras introduced in the present letter may therefore be considered as 
higher-degree generalizations of Winen’s algebra. Their representation theory may be 
investigated by simple methods extending those used in standard angular momentum 
theory, as was done by RoEek (1991) for g( J,) = 1. 

Let us introduce two sets of algebras that are nonlinear deformations of su(2) 
and su(1,l) and denote them by At and A- respectively (in the following, except 
otheiwise stated, the upper sign corresponds to df and the lower one to d-). 

oefinilion. Let d* denote the associative algebras over C generated by three 
operators J, = ( Ju)t, J,, and J -  = ( J + ) t ,  satisfying the commutation relations 

[Ju, Jtl = s(Ju)Jt [Ju, J-I = -J-s(Ju) [Jt, J-I = f(Ju) (la,b,c) 

where f(Ju) and g(Ju) are two real functions of J,,, holomorphic in the 
neighbourhood of zero, 

i=I  i = U  

and satisfying the following hvo conditions: 
(i) the algebras have a Casimir operator of the type 

C = J -  J ,  + h( J,,) (3) 

where h( J,) is some real function of J,,, holomorphic in the neighbourhood of zero, 

m 

(ii) for some values of the parameters, f(Ju) and g(Ju) go to *2Ju and 1 
respectively. 

Remarks. (i) It is easy to check that the algebras arc well defined, Le. that the Jacobi 
identity is satisfied by J,, J+ and J- .  

(ii) Equations (la,b) and (3) can be rewritten in the equivalent forms 
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and 

c =  J+J- +h(J , , ) - f ( J , , )  = $((Z=FY,)J-J+fY,J+J-  +2h(Ju) 'Fr,f(Ju)) 

(6) 

where the symmetrized form of C does not contain any linear term in J,, as in the 
corresponding expression C = i ( J -  J+ f JtJ-) f J i  for su(2) and su(1,l). 

(is) It is always possible to renormalize Ju, Jt and J -  so as to obtain C Y ,  = *2 
and p,, = 1. In the following, we shall assume that such a renormalization has been 
carried out. 

(iv) For g(Ju) = 1, we obtain the algebras introduced by Polychronakos (1990) 
and R o h k  (1991), while for g(J,) = 1 and f(Ju) = fsinh(qJu)/sinh(q/2) or 
fsin(qJ,)/sin(q/2), we get the standard su,(2) and su,(l ,  1) algebras, where 
p = exp q or exp(iq) respectively. 

It is now straightfonvard to prove the following. 

Proposifion 1. The operator C, defined in (3), commutes with J,,, Jt, and J - ,  if 
and only if the functions f(J,), g(J,,) and h(J,,) satisfy the relation 

W J U )  - h(Ju - d J U ) )  = f(Ju). (7) 

In the remainder of this letter, we shall restrict ourselv$s to those algebras for 
which f(J,,), g(J , , ) ,  and h(J,,) are polynomials of degree A,  1-1, and v, respectively. 
We shall now proceed to show that for some definite values of A, 16, v, such algebras 
do exist, which amouns to proving that equation (7) admits a solution. 

Let us fust consider the case where 1-1 = 0, corresponding to the Polychronakos 
R o h k  algebras. 

Proposition 2. For g( J,,) = 1 and f (  J,,) a generic Adegree polynomial, a solution 
of (7) is given by 

where B,(z) and B, denote Bernoulli polynomials and Bernoulli numbers 
respectively. 

Proof. Consider (7) for g(J,,) = 1 and write h(J,) as h(JU) = '&aihi(Jo). 
Since for generic f(Jo), the parameters ai are independent, the functions hi(.&) 
have to satisfy the recursion relations 

h,(J,,) - h;(Ju - 1) = J; i = 1 , .  . . , A .  (9) 

Comparison of (9) with the recursion relation of Bernoulli polynomials (ErdClyi et al 
1953) determines hj(J , )  up to some additive constant, which can be found by using 

0 the condition h,(O) = 0. 

Consider next the cases where p > 1. 
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Proposifion 3. If f(J,) and g ( J , )  are polynomials of degree X and LI respectively, 
where A, p 2 1 and PI # 2, then a polynomial solution h( J,) of (7) cannot exist if 
X # pv or if f(Jo)/g(Ju) is not a polynomial. 

BooJ For h(J,) = riJ& equation (7) becomes 

where the sum over i is a polynomial of degree p( v - 1) whenever the conditions on 
0 f (  J,) and g( J,) stated in the proposition are fulfilled. 

Whenever X = jw and f ( J , )  can he ~ t t e n  as 

where ti are some real parameters and cl = f 2  (because CL, = f 2  and P, = I), 
equation (10) can be easily solved for small values of Y by equating the coefficients 
of equal powers of J, on both sides. Note that the terms independent of J ,  lead to 
the condition 

showing that h v ( - l )  =O; hence h(J,) always contains a factor &(J,+ 1). 
For v = 2, for instance, a solution of (10) does exist whenever 13, # 2 and tz, 

. . ., E ,  are given in terms of PI, . . ., p,, by the relations ti = ~ 2 1 3 ~  / ( 2  - PI). i = 2, 

. . ., 1-1. Hence, we get the following result. 

Boposilion 4. There exist p-parameter algebras .4$t@z,,,pp(2p, p ) ,  corresponding to 
@ = 1, 2, . . ., X = Z p ,  v = 2, pl # 2, for which 

(1%) 

L M J , )  = *2-p, J"(J,+ 1). (13 )  

Let us now consider the case where p = 1 and X = v in more detail. Then 

g(J,) = 1 + (1 - q)Ju (14) 

depends upon a single parameter q (or equivalently /jl = 1 - q), which will be 
assumed real and positive. The value q = 1 corresponds to the undeformed algebras. 
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Propiftion 5. There exist (A - 1)-parameter algebras d22n3,,,aA-,q(X, l),  corre- 
sponding to X = v = 2, 3, . . ., p = 1, q E R+, for which g(J,) is given by (14) and 
f(Ju), h ( J d  bY 

A-I A-2 j t l  

h(J,) = J,(J, + 1) Eoi E ( E ( - l ) J t 1 - 6 A - 1  (15b) 
i=l j = U  k = l  

respectively. Here A-' denotes the inverse of the X x X matrix A whose elements 
are 

where (i!l) is a binomial coefficient and (iiI) 
Pro@ When equation (14) is introduced into (7), f(J,) and h ( J , )  are expanded 
into powers of Ju and equal powers are equated on both sides of the transformed 
equation, one obtains a system of X equations in X unknowns y;, i = 1, . . ., A, 

0 if j < i - 1. 

A 

Aijyj = ai-I i = 1 , .  . . , X 
j = l  

plus an extra condition 

(1 - qA))YA = (18) 

In (17), Ai, is defined by (16) and a, 0. 
The determinant of A is the same as that of A', whose elements are defined by 

I Alj i f i = l  

A!. = (19) - q)kAi-k,j + (-l)'-'(l - q)"IAlj if i = 2 , .  . . , A .  

Since A' is an upper aiangular matrix with diagonal elements A:i equal to -1 if 
i = 1 and to 1 + q + . . . + q'-' if i = 2, . . ., A, one obtains 

A 

detA = - n ( l + q t  . . . + q ' )  $ 0  
i = l  

showing that system (17) has a unique solution 
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By taking the remark following (12) into account, this directly leads to equation (15b). 
By combining (18) With (21), one finds that aA is related to al = f2, 

a2,. . . ,aA-,  through the condition 

where 

if k = 2 , .  . . , A .  (23) A,: = (-l)x-k (1 - q)"k 
1 + q + I . .  + q A - 1  

Equation (23) can be proved by a generating function technique. By introducing the 
function 

+,(t) = X A i j t '  = 
t ( 2 j  - ( q t  - l )J  + 2(-1)j) 
t ( ( q t ) A  --(qt - 1)' + 2 ( - 1 ) ~ )  

if j = 1 , .  . . , X - 1 

if j = x (24) 
x 

i=I  

into the left-hand side of the equation 

;=1 

one indeed obtains that 

satisfies the relation 

&(t )  - + k ( q t  - 1 )  + 2+k(-1)  - AL;,(I - q x ) f A  = t'-' (27) 

where, from &(O) = 0, it results that $k(-l) = 6k,l .  For t = ( q  - l ) - l  and 
k > 1, equation (27) directly leads to (23). After a straightfolward calculation, 

The algebras d:z,,,aA-,q( A ,  1) have an interesting symmetry property, which 
allows us to restrict the q values to the interval 0 < q < 1. 

pfoposirion 6. The transformation ~~~~~~ ~~ q = q'-l, a; = i -q') ' - 'a; ,  Ju = -q'J& 
J* = @J; maps~the algebras d & , e A - , q ( X , l )  onto dmi,,,ei-lq,(X,l). 

For the 6rst few X values, the explicit expressions of f(J,) and h(J,j, obtained 
by inverting the matrix A, are given by 

d:(2,1) 

equation (1%) is finally derived. 

f(J") = fZJfJ(1 + ( 1  - q)J,)  (2w 
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+ P l d l +  nZ) + P A 1  - 4 )  + (-1 + clz - q3 + P , ( l +  4 + q2 + q3)  

- P A 1  + W)JO + (1 - P d l +  9 + q2)J:) .  (306) 

Here we have set o2 = &2(p - q )  if X = 3, and oz = f2(p, - q ) ,  o3 = 
*2(q + pI( 1 - q )  - pz) if X = 4. Note that d:(2,1) also appear as special cases of 
the algebras considered in proposition 4, and that d:(2,1) is equivalent to Witten's 
first deformation of su(2) (uritten 1990, Curfright and Zachos 1990). 

As a final point, let us briefly outline the representation theory of the sets of 
algebras A&.. .a 1 - Ig ( A ,  1). As for the undefonned algebras su(2) and su(l,l), the 
commuting Hennihan operators C and J,, may be simultaneously diagonalized. 

Proposifion 7. If Icm) # 0 is a simultaneous eigenstate of C and J,,, corresponding 
to the eigenvalues c and m respectively, then J;lcm) (respectively J_Rlctn)), 
n E Mt, is either the null vector or a simultaneous eigenstate of C and J,, 
corresponding to the eigenvalues c and mq-* - (1 - q-'t)/(l - q )  (respectively 
mq" - (1 - @)/(I - 4 ) ) .  

result is proved by induction over n. 
Pro05 From (5a,b), it results that the statement is true for n = 1. The general 

0 

Remark. Contrary to what happens for su(2), su(1,l) and their deformations 
corresponding to g ( J u )  = 1, the spectrum of J ,  is not linear, but exponential. 
Exponential spectra had already been found by Rirlie and Nuyts (1991) in connection 
with alternative quantization schemes, and by Spiridonov (1992~1, h) in the lramework 
of qdefonned supersymmetric quantum mechanics. 

Another difference with the undefonned algebras lies in the domain of variation 
of m. 

Prophtirion 8. If m belongs to the interval ((q-l)-I,+co) (respectively ( - co , (q -  
l ) - l ) ) ,  then all the eigenvalues of J, obtained by successive applications of J+ or 
J- upon Icm) $ 0  belong to the Same interval and J+ (respectively J - )  is a raising 
generator. If m = (q - l)-', then neither Jt nor J -  change the J,, eigenvalue. 

Pro05 According to proposition 7, it is enough to show that if m < ( q  - l ) - I ,  
m = ( 9 -  l)-', or m > (q- l)-', then such is the case for q - ' ( t n  f 1) and q m  - 1. 

0 
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The unitaly irreducible representations (unirreps) of A:z,,,eA-,q(A, 1) may fall 
into one of four classes: (i) infinitedimensional unirreps with a lower bound - j ;  
(U) infinitedimensional unirreps with an upper bound J ;  (iii) infinitedimensional 
unirreps with neither lower nor upper bounds; and (iv) finite-dimensional unirreps 
with both lower and upper bounds, -j and J (where in general j # J). In 
addition, there is a trivial one-dimensional unirrep corresponding to m = ( q  - I)-'. 
In forthcoming publications (Delbecq and Quesne 1993a, b), the conditions for the 
existence of the various types of unirreps will be discussed for some algebras of the 
family. 

An open question concerns the existence of a comultiplication rule that would 
enable us to endow the algebras with a Hopf algebraic structure. It is important to 
solve this problem if we want to define a product of two independent representations 
of a given algebra that is still a representation of this algebra. In principle, we could 
use a deforming functional mapping su(2) or su(1,l) onto the algebra (Curtright and 
Zachos 1990) to induce the coproduct from the ordinary addition rule for su(2) or 
su(1,l) (Polychronakos 1990, Curtright et al 1991). However, as such a procedure 
leads to complicated and untraetable coproducts, a direct explicit determination would 
be preferable (Granovskii et af 1992). 
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